Pr. Jean-Pierre Wolf, winner of the 2018 ZEISS Research Award

The ZEISS Research Award promotes outstanding achievements in the field of optics.  Jean-Pierre Wolf, Professor at the University of Geneva, will be honored for his groundbreaking application of ultra-short, ultra-intense laser pulses in researching the earth’s atmosphere. His research makes it possible to find out more about pollutants in the earth’s atmosphere and potentially control lightning and condensation in clouds.

The awards will be presented during the ZEISS Symposium “Optics in the Quantum World” on 18 April 2018 at the ZEISS Forum in Oberkochen

Shockwave-assisted laser filament conductivity

E. Schubert, D. Mongin, T. Produit, G. Schimmel, J. Kasparian and J.-P. Wolf, Applied Physics Letters 111, 211103 (2017) link

Abstract: We investigate the influence of ultrashort laser filaments on high-voltage discharges and spark-free unloading at various repetition rates and wind conditions. For electric fields well below, close to, and above the threshold for discharges, we observe remote spark-free unloading, discharge suppression, and discharge guiding, respectively. These effects rely on an indirect consequence of thermal deposition, namely, the fast dilution of ions by the shockwave triggered by the filament at each laser shot. This dilution drastically limits ion-ion recombination and increases the plasma channel conductivity that can still be non-negligible after tens or hundreds of milliseconds. As a result, the charge flow per pulse is higher at low repetition rates.