Dynamics of the femtosecond laser-triggered spark gap

E. W Rosenthal, I. Larkin, A. Goffin, T. Produit, M. C. Schoeder, J.-P. Wolf and H. M. Milchberg, “Dynamics of the femtosecond laser-triggered spark gap,” Optics Express 28, 24599 (2020) https://doi.org/10.1364/OE.398836

We present space and time resolved measurements of the air hydrodynamics induced by femtosecond laser pulse excitation of the air gap between two electrodes at high potential difference. We explore both plasma-based and plasma-free gap excitation. The former uses the plasma left in the wake of femtosecond filamentation, while the latter exploits air heating by multiple-pulse resonant excitation of quantum molecular wavepackets. We find that the cumulative electrode-driven air density depression channel plays the dominant role in the gap evolution leading to breakdown. Femtosecond laser heating serves mainly to initiate the depression channel; the presence of filament plasma only augments the early heating.

Leave a Reply

Your email address will not be published. Required fields are marked *